Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain.
نویسندگان
چکیده
Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP6), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP6. InsP6 binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP6 binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.
منابع مشابه
Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin
MARTX toxins modulate the virulence of a number of Gram-negative Vibrio species. This family of toxins is defined by the presence of a cysteine protease domain (CPD), which proteolytically activates the Vibrio cholerae MARTX toxin. Although recent structural studies of the CPD have uncovered a new allosteric activation mechanism, the mechanism of CPD substrate recognition or toxin processing is...
متن کاملAutoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain.
Vibrio cholerae RTX is a large multifunctional bacterial toxin that causes actin crosslinking. Due to its size, it was predicted to undergo proteolytic cleavage during translocation into host cells to deliver activity domains to the cytosol. In this study, we identified a domain within the RTX toxin that is conserved in large clostridial glucosylating toxins TcdB, TcdA, TcnA, and TcsL; putative...
متن کاملMechanistic and structural insights into the proteolytic activation of Vibrio cholera MARTX toxin
MARTX toxins modulate the virulence of a number of Gram-negative Vibrio species. This family of toxins is defined by the presence of a cysteine protease domain (CPD), which proteolytically activates the Vibrio cholerae MARTX toxin. Although recent structural studies of the CPD have uncovered a new allosteric activation mechanism, the mechanism of CPD substrate recognition or toxin processing is...
متن کاملAuto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-k...
متن کاملThe Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold.
A Rho GTPase inactivation domain (RID) has been discovered in the multifunctional, autoprocessing RTX toxin RtxA from Vibrio cholerae. The RID domain causes actin depolymerization and rounding of host cells through inactivation of the small Rho GTPases Rho, Rac, and Cdc42. With only a few toxin proteins containing RID domains in the current sequence database, the structure and molecular mechani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 322 5899 شماره
صفحات -
تاریخ انتشار 2008